Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lukas Gartenmann Dickson, ${ }^{\text {a }}$

Jürg Hauser, ${ }^{\text {b }}$ * Adrian Blaser, ${ }^{\text {a }}$
Jean-Louis Reymond ${ }^{\text {a }}$ and Hans-Beat Bürgi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Bern, Switzerland, and ${ }^{\text {b }}$ Laboratory for Chemical and Mineralogical Crystallography, University of Berne, Freiestrasse 3, CH-3012 Bern,
Switzerland

Correspondence e-mail: juerg.hauser@krist.unibe.ch

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.115$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(1SR,2SR,4SR)-7-Oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid

The title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}$, has been synthesized and structurally characterized. The molecules are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form centrosymmetric dimers.

Comment

Diels-Alder addition of furan and acrylic acid leads to the racemic title compound (Suami et al., 1977) (1SR,2SR,4SR)-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid, (I), of which we report the crystal structure. 7-Oxabicyclo[2.2.1]hept-5-enyl derivatives are extremely useful as key intermediates for the synthesis of important types of natural products and analogues, such as C-nucleosides and C-glycosides (Vogel et al., 1990; Corey \& Loh, 1993). After separation from the exodiastereomers and optical resolution (Ogawa et al., 1985) with chiral auxiliaries, the two enantiomerically pure endo-enantiomers give access to both L - and D -hexose derivatives through stereoselective transformations.

(I)

The crystal structure of (I) was determined in order to confirm its molecular structure. The ring system is nearly mirror symmetric: differences in equivalent bond lengths are smaller than 3.5 s.u.'s. The biggest difference in equivalent bond angles of 4.6 s.u.'s is observed at the carboxylatesubstituted atom C2 (Fig. 1). The carboxylate bond distances $[\mathrm{C} 7-\mathrm{O} 2=1.212$ (2) \AA and $\mathrm{C} 7-\mathrm{O} 3=1.301$ (2) $\AA]$ correspond to typical distances [1.214 (19) and 1.308 (19) \AA, respectively; Allen et al., 1992]. The carboxylate group adopts a staggered conformation with respect to the $\mathrm{C} 2-\mathrm{C} 1$ bond $[\mathrm{O} 3-\mathrm{C} 7-$ $\left.\mathrm{C} 2-\mathrm{C} 1=-47.7(2)^{\circ}\right]$ and an almost eclipsed conformation with respect to the $\mathrm{C} 2-\mathrm{C} 3$ bond $[\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3=$

Figure 1

The molecular structure of (I), showing the atomic numbering and 50% probability displacement ellipsoids.

Received 4 February 2004
Accepted 10 February 2004
Online 14 February 2004

Figure 2
Packing diagram of (I), viewed down the a axis, showing hydrogen bonds as dashed lines.
$\left.15.7(2)^{\circ}\right]$, with a short intramolecular contact $\mathrm{O} 2 \cdots \mathrm{H} 7$ of 2.51 (2) A. Two molecules are held together in a dimer located on a centre of inversion by the familiar carboxylic acid linkage (Leiserowitz, 1976). The two symmetry-equivalent hydrogen bonds with a length of 1.73 (3) \AA are of intermediate strength and show an almost linear $D-\mathrm{H} \cdots A$ angle of $178(2)^{\circ}$. The eight-membered ring formed by the two carboxylate groups is almost planar, with an r.m.s. deviation of $0.018 \AA$ from the mean plane through the C and O atoms. The dimers are stacked along a-c, with a weak $\mathrm{O} 1 \cdots \mathrm{H} 6$ hydrogen bond of 2.55 (2) Å between neighbouring molecules (Fig. 2).

Experimental

A mixture of furan ($204.00 \mathrm{~g}, 3 \mathrm{~mol}$), acrylic acid $(216.02 \mathrm{~g}, 3 \mathrm{~mol}$) and hydroquinone $(0.30 \mathrm{~g}, 2.7 \mathrm{mmol})$ was kept for 81 d under nitrogen at room temperature in the dark. The resulting racemic endo product, in the form of white crystals, was filtered off and twice recrystallized at 313 K from ethyl acetate/hexane [yield $40 \%, 168.0 \mathrm{~g}$, 1.2 mol ; m.p. 369-371 K (Suami et al., 1977]. The exo side-product could be concentrated in the mother liquor. MS: $140,122,111,95,81$, 68, 54, 44, 39, 27. IR: 3436 (m), 3012 (s), 2962 (s), 1716 (vs), 1456 (m), $1320(s), 1222(s), 1198(s) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): 9.8 (very broad, COOH), $6.47\left(d d, J_{6,5}=6, J_{6,1}=2 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.31\left(d d, J_{5,6}=\right.$ $\left.6, J_{5,4}=2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.20\left(d d d, J_{1,2 \text {-exo }}=5, J_{1,6}=2, J_{1,4}=1 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.05$ $\left(d d d, J_{4,3 \text {-exo }}=5, J_{4,5}=2, J_{4,1}=1 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.18\left(d d d, J_{2,3 \text {-exo }}=9, J_{2,1}=4\right.$, $\left.J_{2,3 \text {-endo }}=4 \mathrm{~Hz}, \mathrm{H}_{2 \text {-exo }}\right), 2.13\left(d d d, J_{\text {gem }}=11, J_{3,2 \text {-exo }}=9, J_{3,4}=4 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{3 \text {-exo }}\right), 1.58\left(d d, J_{\text {gem }}=11, J_{3,4}=4, J_{3,2 \text {-exo }}=4 \mathrm{~Hz}, \mathrm{H}_{3 \text {-endo }}\right)($ Nelson \& Allen, 1972). The exo product shows an additional ${ }^{1} \mathrm{H}$ NMR signal at 2.45 p.p.m.

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}$
$M_{r}=140.13$
Monoclinic, $P 2_{1} / n$
$a=5.239(4) \AA$
$b=23.709(19) \AA$
$c=5.669$ (5) \AA
$\beta=111.708(13)^{\circ}$
$V=654.2(9) \AA^{3}$
$Z=4$
$D_{x}=1.423 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 781 reflections
$\theta=3.4-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.55 \times 0.42 \times 0.35 \mathrm{~mm}$

Data collection

Siemens SMART 1K CCD area-
1256 reflections with $I>2 \sigma(I)$
detector diffractometer
ω scans
Absorption correction: none
3688 measured reflections
1439 independent reflections
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.8^{\circ}$
$h=-6 \rightarrow 6$
$k=-30 \rightarrow 26$
$l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.115$
$S=1.04$
1439 reflections
123 parameters
All H -atom parameters refined

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0538 P)^{2}\right. \\
\quad+0.2006 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.007 \\
\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.434(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.504(3)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.441(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.313(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.554(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.498(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.536(2)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.495(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.542(3)$		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$95.53(11)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$101.27(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$101.97(14)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$101.31(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$100.53(13)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$107.19(13)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$106.75(13)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$106.05(16)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$116.27(15)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$105.50(16)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$113.50(13)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3$	$122.81(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$101.46(13)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2$	$123.97(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$100.62(13)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 2$	$113.21(15)$

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: $S H E L X T L$.

References

Allen, F. H., Kennard, O. Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1992). International Tables of Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 685-706. Dordrecht: Kluwer Academic Publishers.
Bruker (2003). SMART (Version 5.059) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.
Corey, E. J. \& Loh, T.-P. (1993). Tetrahedron Lett. 34, 3979-3982.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Nelson, W. L. \& Allen, D. R. (1972). J. Heterocycl. Chem. 9, 561-568.
Ogawa, S., Iwasawa, Y., Nose, T., Suami, T., Ohba, S., Ito, M. \& Saito, Y. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 903-906.

Sheldrick, G. M. (2003). SHELXTL. DOS/Windows/NT Version 6.13. Bruker AXS Inc., Madison, Wisconsin, USA.
Suami, T., Ogawa, S., Nakamoto, K. \& Kasahara, I. (1977). Carbohydr. Res. 58, 240-244.
Vogel, P., Fattori, D., Gasparini, F. \& Le Drian, C. (1990). Synlett, pp. 173-185.

